If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4w^2+24w-64=0
a = 4; b = 24; c = -64;
Δ = b2-4ac
Δ = 242-4·4·(-64)
Δ = 1600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1600}=40$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(24)-40}{2*4}=\frac{-64}{8} =-8 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(24)+40}{2*4}=\frac{16}{8} =2 $
| 25=|-5y+5| | | 5=5(z+8) | | 3=4b−9 | | 35+0.40x=20+0.55 | | | | 4x-(-20)=18 | | | | 4p+5=5p+4 | | | | | | 15-d=-35-8d | | f(0)=5(0)+2 | | 35+0.40x=20 | | –10=j/2+–8 | | –1−2h=–10+h | | 1.61(1+0.5n)-3,2=1.1(n-6.8) | | 2x=15+.50x | | 5/x=6/18 | | x-1.5=9 | | -5(6-x)=-32 | | f(-2)=5(-2)+2 | | 10x+4=9x+11 | | 18g=63 | | 9x+21=3(x-15) | | 6w+10=3w-2w-10 | | -5(-5-3m)=115 | | 1.42-2.7z=0.78-2.8z | | 8(1+2x)=7x=-153 | | 28/x=-6 | | 19=-2(5x+7} | | 4t+2t+6=6t+2+4 | | 2^(2x)=6^(x-1) |